Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.319
Filtrar
1.
Int J Clin Pediatr Dent ; 17(1): 54-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38559858

RESUMO

Streptococcus mutans (S. mutans) is the major pathogen involved in caries development during the first few years of life. Prebiotics represent a breakthrough approach to maintaining oral health by utilizing naturally beneficial bacteria against harmful bacteria. Aim: To assess the effects of prebiotics supplements on salivary pH and salivary buffer capacity in children with early childhood caries (ECC). Materials and methods: This study was performed on 23 samples, aged 3-6 years who received prebiotics supplements for 14 days, followed up to 3 and 6 months. Unstimulated saliva samples were collected to assess salivary pH and salivary buffer capacity using salivary check buffer kit. Statistical analysis used: The data showed normal distribution; hence, parametric tests were applied. Repeated measures of analysis of variance were applied to compare the mean at the three different time intervals, followed by paired t-test for pairwise comparison. Results: There was a highly significant difference on comparing the different parameters. Salivary pH was lowest at baseline with a mean value of 6.65 which increased at the 3-6-month follow-up to 7.00 and 7.33. Similarly, salivary buffer capacity which was 4.73 at baseline, increased at 3 months to 8.17, and at 6 months to 10.34. Conclusion: It can be suggested that prebiotics supplements can be adopted as a novel approach in children with ECC as a form of preventive measure to facilitate a better lifestyle. Clinical significance: These prebiotics when taken for a period of 2 weeks increased the salivary pH as well as salivary buffer capacity when the data was compared at different time intervals emphasizing its importance, especially in children with ECC. How to cite this article: Fernandes VA, Mata DB, Nadig B, et al. Effect of Prebiotics Supplements on Salivary pH and Salivary Buffer Capacity in Children with Early Childhood Caries: An In Vivo Study. Int J Clin Pediatr Dent 2024;17(1):54-58.

2.
Front Endocrinol (Lausanne) ; 15: 1277921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572479

RESUMO

Background: There is controversial data on the effects of prebiotic, probiotic, or synbiotic supplementations on overweight/obesity indicators. Thus, we aimed to clarify this role of biotics through an umbrella review of the trials' meta-analyses. Methods: All meta-analyses of the clinical trials conducted on the impact of biotics on overweight/obesity indicators in general populations, pregnant women, and infants published until June 2023 in PubMed, Web of Sciences, Scopus, Embase, and Cochrane Library web databases included. The meta-analysis of observational and systematic review studies without meta-analysis were excluded. We reported the results by implementing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flowchart. The Assessment of Multiple Systematic Reviews-2 (AMSTAR2) and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) systems were used to assess the methodological quality and quality of evidence. Results: Overall, 97 meta-analysis studies were included. Most studies were conducted on the effect of probiotics in both genders. Consumption of prebiotic: 8-66 g/day, probiotic: 104 -1.35×1015 colony-forming unit (CFU)/day, and synbiotic: 106-1.5×1011 CFU/day and 0.5-300 g/day for 2 to 104 weeks showed a favorable effect on the overweight/obesity indicators. Moreover, an inverse association was observed between biotics consumption and overweight/obesity risk in adults in most of the studies. Biotics did not show any beneficial effect on weight and body mass index (BMI) in pregnant women by 6.6×105-1010 CFU/day of probiotics during 1-25 weeks and 1×109-112.5×109 CFU/capsule of synbiotics during 4-8 weeks. The effect of biotics on weight and BMI in infants is predominantly non-significant. Prebiotics and probiotics used in infancy were from 0.15 to 0.8 g/dL and 2×106-6×109 CFU/day for 2-24 weeks, respectively. Conclusion: It seems biotics consumption can result in favorable impacts on some anthropometric indices of overweight/obesity (body weight, BMI, waist circumference) in the general population, without any significant effects on birth weight or weight gain during pregnancy and infancy. So, it is recommended to intake the biotics as complementary medications for reducing anthropometric indices of overweight/obese adults. However, more well-designed trials are needed to elucidate the anti-obesity effects of specific strains of probiotics.


Assuntos
Probióticos , Simbióticos , Gravidez , Adulto , Feminino , Humanos , Masculino , Prebióticos , Sobrepeso/tratamento farmacológico , Probióticos/uso terapêutico , Obesidade/tratamento farmacológico
3.
J Pharm Bioallied Sci ; 16(Suppl 1): S236-S238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595383

RESUMO

Aim: The aim of the study is to know about the awareness of probiotics among undergraduate dental students. Materials and Methods: We conducted cross-sectional research where we had distributed a questionnaire consisting of ten open-ended questions, among 150 dental students through emails. The questions were based on the utilization of probiotics in dentistry. The data obtained was statistically analyzed with the help of Chi-square test. Results: In our study, we noted that most of the participants were aware of the term probiotics and had general ideas but were not fully aware of its pathogenesis. Around 83.2% of the participants were aware of probiotics and general concepts. We also noted that only 42.5% of the students agreed that probiotics can be used in the management of halitosis as well as periodontitis. Conclusion: We concluded that most of the dental students had a lack of awareness as well as were not familiar with the usage of probiotics in dentistry.

4.
Acta Pharmacol Sin ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589690

RESUMO

Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by deficits in communication and behavior. Increasing evidence suggests that the microbiota-gut-brain axis and the likely related immune imbalance may play a role in the development of this disorder. Gastrointestinal deficits and gut microbiota dysfunction have been linked to the development or severity of autistic behavior. Therefore, treatments that focus on specific diets may improve gastrointestinal function and aberrant behavior in individuals with ASD. In this study, we investigated whether a diet containing specific prebiotic fibers, namely, 3% galacto-oligosaccharide/fructo-oligosaccharide (GOS/FOS; 9:1), can mitigate the adverse effects of in utero exposure to valproic acid (VPA) in mice. Pregnant BALB/cByJ dams were injected with VPA (600 mg/kg, sc.) or phosphate-buffered saline (PBS) on gestational day 11 (G11). Male offspring were divided into four groups: (1) in utero PBS-exposed with a control diet, (2) in utero PBS-exposed with GOS/FOS diet, (3) in utero VPA-exposed with a control diet, and (4) in utero VPA-exposed with GOS/FOS diet. Dietary intervention started from birth and continued throughout the duration of the experiment. We showed that the prebiotic diet normalized VPA-induced alterations in male offspring, including restoration of key microbial taxa, intestinal permeability, peripheral immune homeostasis, reduction of neuroinflammation in the cerebellum, and impairments in social behavior and cognition in mice. Overall, our research provides valuable insights into the gut-brain axis involvement in ASD development. In addition, dietary interventions might correct the disbalance in gut microbiota and immune responses and, ultimately, might improve detrimental behavioral outcomes in ASD.

5.
FASEB Bioadv ; 6(4): 118-130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585431

RESUMO

Obstructive sleep apnea (OSA) is a multifactorial sleep disorder with a high prevalence in the general population. OSA is associated with an increased risk of developing cardiovascular diseases (CVDs), particularly hypertension, and is linked to worse outcomes. Although the correlation between OSA and CVDs is firmly established, the mechanisms are poorly understood. Continuous positive airway pressure is primary treatment for OSA reducing cardiovascular risk effectively, while is limited by inadequate compliance. Moreover, alternative treatments for cardiovascular complications in OSA are currently not available. Recently, there has been considerable attention on the significant correlation between gut microbiome and pathophysiological changes in OSA. Furthermore, gut microbiome has a significant impact on the cardiovascular complications that arise from OSA. Nevertheless, a detailed understanding of this association is lacking. This review examines recent advancements to clarify the link between the gut microbiome, OSA, and OSA-related CVDs, with a specific focus on hypertension, and also explores potential health advantages of adjuvant therapy that targets the gut microbiome in OSA.

6.
J Agric Food Chem ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629750

RESUMO

Difructose anhydride I (DFA-I) can be produced from inulin, with DFA-I-forming inulin fructotransferase (IFTase-I). However, the metabolism of inulin through DFA-I remains unclear. To clarify this pathway, several genes of enzymes related to this pathway in the genome of Microbacterium flavum DSM 18909 were synthesized, and the corresponding enzymes were encoded, purified, and investigated in vitro. After inulin is decomposed to DFA-I by IFTase-I, DFA-I is hydrolyzed to inulobiose by DFA-I hydrolase. Inulobiose is then hydrolyzed by ß-fructofuranosidase to form fructose. Finally, fructose enters glycolysis through fructokinase. A ß-fructofuranosidase (MfFFase1) clears the byproducts (sucrose and fructo-oligosaccharides), which might be partially hydrolyzed by fructan ß-(2,1)-fructosidase/1-exohydrolase and another fructofuranosidase (MfFFase2). Exploring the DFA-I pathway of inulin and well-studied enzymes in vitro extends our basic scientific knowledge of the energy-providing way of inulin, thereby paving the way for further investigations in vivo and offering a reference for further nutritional investigation of inulin and DFA-I in the future.

7.
J Diet Suppl ; : 1-32, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622882

RESUMO

Diabetes is a metabolic disorder whose prevalence has become a worrying condition in recent decades. Chronic diabetes can result in serious health conditions such as impaired kidney function, stroke, blindness, and myocardial infarction. Despite a variety of currently available treatments, cases of diabetes and its complications are on the rise. This review article provides a comprehensive account of the ameliorative effect of prebiotics and probiotics individually or in combination i.e. synbiotics on health complications induced by Type 2 Diabetes Mellitus (T2DM). Recent advances in the field underscore encouraging outcomes suggesting the consumption of synbiotics leads to favorable changes in the gut microbiota. These changes result in the production of bioactive metabolites such as short-chain fatty acids (crucial for lowering blood sugar levels), reducing inflammation, preventing insulin resistance, and encouraging the release of glucagon-like peptide-1 in the host. Notably, novel strategies supplementing synbiotics to support gut microbiota are gaining attraction as pivotal interventions in mitigating T2DM-induced health complications. Thus, by nurturing a symbiotic relationship between prebiotics and probiotics i.e. synbiotics, these interventions hold promise in reshaping the microbial landscape of the gut thereby offering a multifaceted approach to managing T2DM and its associated morbidities. Supporting the potential of synbiotics underscores a paradigm shift toward holistic and targeted interventions in diabetes management, offering prospects for improved outcomes and enhanced quality of life for affected individuals. Nevertheless, more research needs to be done to better understand the single and multispecies pre/pro and synbiotics in the prevention and management of T2DM-induced health complications.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38623929

RESUMO

BACKGROUND: Children with attention deficit hyperactivity disorder (ADHD) may benefit from probiotics and prebiotics, but the effects are unclear. To determine whether probiotics and prebiotics affect children with ADHD, a systematic review was conducted. METHODS: The present systematic review analyzed cohort studies and randomized controlled trials that examined whether prebiotics and probiotics are associated with ADHD. Seven randomized controlled trials and two cohort studies met our inclusion criteria. RESULTS: Research on Lactobacillus rhamnosus GG (LGG) probiotic supplementation showed that children with ADHD had better emotional, physical, social, and school functioning, and a higher health-related quality of life compared to the placebo group. The studies also showed that Synbiotic 2000 reduces markers of intestinal and vascular inflammation in children with ADHD, in part through increasing SCFA levels. CONCLUSION: The use of probiotics and prebiotics as adjuvants therapy in patients with ADHD is beneficial. Further studies with longer duration, including more participants and a variety of age groups, and using various evaluation techniques such as in vivo observation are required to examine the effects of prebiotics and probiotics on ADHD.

9.
J Sci Food Agric ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625727

RESUMO

Xylooligosaccharides (XOS) are considered a potent source of prebiotics for humans. The global prebiotic market is expanding in size, was valued at USD 6.05 billion in 2021, and is expected to grow at a 14.9% compound annual growth rate (CAGR) between 2022 and 2030, indicating a huge demand. These XOS are non-digestible pentose sugar oligomers comprising mainly xylose. Xylose is naturally present in the lignocellulosic biomass (LCB), fruits, and vegetables. Apart from the prebiotic effect, these XOS have been reported to reduce blood cholesterol, antioxidant effect, increase calcium absorption, reduction of colon cancer risk, and benefit diabetic patients. Primary use of XOS is reported in the feed industry followed by health, medical use, food, and drinks. LCB mainly contains glucan, xylan, and lignin. After glucan, xylan is the second-highest available sugar on the globe composed of xylose. Therefore, the xylan fraction of LCB has great significance in producing food, feed, and energy. Glucan has been exploited for the commercial production of ethanol, xylitol, furfural, hydroxymethyl furfural, and glucose. Whereas as of now xylan has limited applications. Therefore, xylan can be exploited to convert to XOS. Production of XOS from LCB fraction not only helps to produce these at a very low price but also helps in the reduction of greenhouse gases. Its use in food and drinks is increasing as it can be derived from the abundantly and cheaply available LCB. The article provides review on production, purification, and characterization of XOS in view of their use as nutraceuticals. This article is protected by copyright. All rights reserved.

10.
Wei Sheng Yan Jiu ; 53(2): 237-242, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604959

RESUMO

OBJECTIVE: To understand the recommended dose distribution of prebiotic-containing health food in China. METHODS: The overall recommended dose of prebiotic health food was available from the label information of approved prebiotic health food from 1996 to 2022; the recommended dose distribution of prebiotic-containing health food was analyzed from different healthy functions and different ways of addition. RESULTS: There were 174 prebiotic-containing health food products with clear dose information, respectively, involving 5 prebiotics including Fructooligosaccharides, Galactooligosaccharides, Isomaltooligosaccharides, Xylo-oligosaccharides and Polydextrose, and the majority of prebiotics were added in combination, with 159 products. The recommended dose range of prebiotic-containing health food products was wide, and in general, the dose of prebiotic-containing health food products used alone was higher than the dose used in combination. The recommended daily intake range of health food containing Fructooligosaccharides was 5.28-17 500 mg/d, the recommended daily intake range of health food containing Isomaltooligosaccharides was 220-28 000 mg/d, the dose range of health food containing Xylo-oligosaccharides was 8.4-2 800 mg/d, the dose range of health food containing Polydextrose was 4-12 120 mg/d, the number of Galacto-Oligosaccharides products Only two kinds of products were included, with doses of 259.8 mg/d and 3500 mg/d, respectively. The claimed functions of prebiotic health food products were focused on laxative function, immunity enhancement, and regulation of intestinal flora. The application dose of prebiotic health food with different functional compounding additions was close to the overall dose. CONCLUSION: The recommended dosage range of prebiotics in health food containing prebiotics in China is large, and prebiotics in products are mainly added by compounding.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Oligossacarídeos , China
11.
Curr Drug Metab ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38571357

RESUMO

Preserving host health and homeostasis is largely dependent on the human gut microbiome, a varied and ever-changing population of bacteria living in the gastrointestinal tract. This article aims to explore the multifaceted functions of the gut microbiome and shed light on the evolving field of research investigating the impact of herbal medicines on both the composition and functionality of the gut microbiome. Through a comprehensive overview, we aim to provide insights into the intricate relationship between herbal remedies and the gut microbiome, fostering a better understanding of their potential implications for human health.The gut microbiota is composed of trillions of microorganisms, predominantly bacteria, but also viruses, fungi, and archaea. It functions as a complex ecosystem that interacts with the host in various ways. It aids in nutrient metabolism, modulates the immune system, provides protection against pathogens, and influences host physiology. Moreover, it has been linked to a range of health outcomes, including digestion, metabolic health, and even mental well-being. Recent research has shed light on the potential of herbal medicines to modulate the gut microbiome. Herbal medicines, derived from plants and often used in traditional medicine systems, contain a diverse array of phytochemicals, which can directly or indirectly impact gut microbial composition. These phytochemicals can either act as prebiotics, promoting the growth of beneficial bacteria, or possess antimicrobial properties, targeting harmful pathogens. Several studies have demonstrated the effects of specific herbal medicines on the gut microbiome. For example, extracts from herbs have been shown to enhance the abundance of beneficial bacteria, such as Bifidobacterium and Lactobacillus, while reducing potentially harmful microbes. Moreover, herbal medicines have exhibited promising antimicrobial effects against certain pathogenic bacteria. The modulation of the gut microbiome by herbal medicines has potential therapeutic implications. Research suggests herbal interventions could be harnessed to alleviate gastrointestinal disorders, support immune function, and even impact metabolic health. However, it is important to note that individual responses to herbal treatments can vary due to genetics, diet, and baseline microbiome composition. In conclusion, the gut microbiome is a critical player in maintaining human health, and its modulation by herbal medicines is a burgeoning area of research. Understanding the complex interactions between herbal compounds and gut microbiota will pave the way for innovative approaches to personalized healthcare and the development of herbal-based therapeutics aimed at promoting gut health and overall well-being.

12.
Foods ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611345

RESUMO

Inulin, a non-digestible polysaccharide, has gained attention for its prebiotic properties, particularly in the context of obesity, a condition increasingly understood as a systemic inflammatory state linked to gut microbiota composition. This study investigates the short-term protective effects of inulin with different degrees of polymerization (DPn) against metabolic health deterioration and gut microbiota alterations induced by a high-fat diet (HFD) in Sprague Dawley rats. Inulin treatments with an average DPn of 7, 14, and 27 were administered at 1 g/kg of bodyweight to HFD-fed rats over 21 days. Body weight, systemic glucose levels, and proinflammatory markers were measured to assess metabolic health. Gut microbiota composition was analyzed through 16S rRNA gene sequencing. The results showed that inulin27 significantly reduced total weight gain and systemic glucose levels, suggesting a DPn-specific effect on metabolic health. The study also observed shifts in gut microbial populations, with inulin7 promoting several beneficial taxa from the Bifidobacterium genera, whilst inducing a unique microbial composition compared to medium-chain (DPn 14) and long-chain inulin (DPn: 27). However, the impact of inulin on proinflammatory markers and lipid metabolism parameters was not statistically significant, possibly due to the short study duration. Inulin with a higher DPn has a more pronounced effect on mitigating HFD-induced metabolic health deterioration, whilst inulin7 is particularly effective at inducing healthy microbial shifts. These findings highlight the benefits of inulin as a dietary adjuvant in obesity management and the importance of DPn in optimizing performance.

13.
J Sci Food Agric ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619112

RESUMO

BACKGROUND: The adhesion of probiotics to the intestine is crucial for their probiotic function. In previous studies, Tremella polysaccharides (TPS) (with sodium casein) have shown the potential to encapsulate probiotics and protect them in a simulated gastrointestinal tract. This study explored the effect of TPS (with sodium casein) on the adhesion of probiotics. RESULTS: Lactobacillus plantarum was coated with TPS and sodium casein in different proportions, and was freeze-dried. The rheological properties of the mixture of probiotics powder and mucin solution were determined by static and dynamic rheological analysis. Aqueous solutions of probiotic powder and mucin mixture exhibited pseudoplastic fluid rheological properties. The higher the proportion of TPS content, the higher the apparent viscosity and yield stress. The mixed bacterial powder and mucin fluid displayed thixotropy and was in accordance with the Herschel-Bulkley model. The TPS increased the bio-adhesive force of the probiotic powder and mucin. When using TPS as the only carbon source, the adhesion of L. plantarum to Caco-2 cells increased by 228% in comparison with glucose in vitro. Twelve adhesive proteins were also detected in the whole-cell proteome of L. plantarum. Among them, ten adhesive proteins occurred abundantly when grown with TPS as a carbon source. CONCLUSION: Tremella polysaccharides therefore possess probiotic properties and can promote the intestinal adhesion of L. plantarum. © 2024 Society of Chemical Industry.

14.
Food Sci Nutr ; 12(4): 2436-2454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628220

RESUMO

Overweight and obesity are closely linked to gut dysbiosis/dysmetabolism and disrupted De-Ritis ratio [aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio], which may contribute to chronic noncommunicable diseases onset. Concurrently, extensive research explores nutraceuticals, and health-enhancing supplements, for disease prevention or treatment. Thus, sedentary overweight volunteers were double-blind randomized into two groups: Novel Nutraceutical_(S) (without silymarin) and Novel Nutraceutical (with silymarin). Experimental formulations were orally administered twice daily over 180 consecutive days. We evaluated fecal gut microbiota, based on partial 16S rRNA sequences, biochemistry and endocrine markers, steatosis biomarker (AST/ALT ratio), and anthropometric parameters. Post-supplementation, only the Novel Nutraceutical group reduced Clostridium clostridioforme (Firmicutes), Firmicutes/Bacteroidetes ratio (F/B ratio), and De-Ritis ratio, while elevating Bacteroides caccae and Bacteroides uniformis (Bacteroidetes) in Brazilian sedentary overweight volunteers after 180 days. In summary, the results presented here allow us to suggest the gut microbiota as the action mechanism of the Novel Nutraceutical promoting metabolic hepatic recovery in obesity/overweight non-drug interventions.

15.
J Anim Sci Technol ; 66(2): 237-250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38628679

RESUMO

The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.

16.
J Control Release ; 370: 43-65, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38608876

RESUMO

Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.

17.
J Ren Nutr ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621435

RESUMO

The rising global incidence of chronic inflammatory diseases calls for innovative and sustainable medical solutions. Brewers' spent grain (BSG), a byproduct of beer production, presents a unique opportunity in this regard. This review explores the multifaceted health benefits of BSG, with a focus on managing chronic kidney disease (CKD). BSG is identified as a potent prebiotic with potential as a therapeutic agent in CKD. We emphasize the role of gut dysbiosis in CKD and discuss how BSG could help mitigate metabolic derangements resulting from dysbiosis and CKD. Fermentation of BSG further enhances its positive impact on gut health. Incorporating fermented BSG as a key component in preventive healthcare could promote a more sustainable and healthier future. By optimizing the use of this typically discarded byproduct, we can align proactive healthcare strategies with responsible resource management, benefiting both people and the environment.

18.
Food Res Int ; 184: 114276, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609208

RESUMO

Inulin, a polysaccharide characterized by a ß-2,1 fructosyl-fructose structure terminating in a glucosyl moiety, is naturally present in plant roots and tubers. Current methods provide average degrees of polymerization (DP) but lack information on the distribution and absolute concentration of each DP. To address this limitation, a reproducible (CV < 10 %) high throughput (<2 min/sample) MALDI-MRMS approach capable of characterizing and quantifying inulin molecules in plants using matched-matrix consisting of α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-BA), chicory inulin-12C and inulin-13C was developed. The method identified variation in chain lengths and concentration of inulin across various plant species. Globe artichoke hearts, yacón and elephant garlic yielded similar concentrations at 15.6 g/100 g dry weight (DW), 16.8 g/100 g DW and 17.7 g/100 g DW, respectively, for DP range between 9 and 22. In contrast, Jerusalem artichoke demonstrated the highest concentration (53.4 g/100 g DW) within the same DP ranges. Jerusalem artichoke (DPs 9-32) and globe artichoke (DPs 9-36) showed similar DP distributions, while yacón and elephant garlic displayed the narrowest and broadest DP ranges (DPs 9-19 and DPs 9-45, respectively). Additionally, qualitative measurement for all inulin across all plant samples was feasible using the peak intensities normalized to Inulin-13C, and showed that the ratio of yacón, elephant garlic and Jerusalem was approximately one, two and three times that of globe artichoke. This MALDI-MRMS approach provides comprehensive insights into the structure of inulin molecules, opening avenues for in-depth investigations into how DP and concentration of inulin influence gut health and the modulation of noncommunicable diseases, as well as shedding light on refining cultivation practices to elevate the beneficial health properties associated with specific DPs.


Assuntos
Produtos Biológicos , Cynara scolymus , Alho , Helianthus , Inulina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antioxidantes , Espectroscopia de Ressonância Magnética , Lasers
19.
JBMR Plus ; 8(5): ziae021, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38562914

RESUMO

Targeting the gut-bone axis with probiotics and prebiotics is considered as a promising strategy to reduce the risk of osteoporosis. Gut-derived short chain fatty acids (SCFA) mediate the effects of probiotics on bone via Tregs, but it is not known whether prebiotics act through a similar mechanism. We investigated how 2 different prebiotics, tart cherry (TC) and fructooligosaccharide (FOS), affect bone, and whether Tregs are required for this response. Eight-wk-old C57BL/6 female mice were fed with diets supplemented with 10% w/w TC, FOS, or a control diet (Con; AIN-93M) diet, and they received an isotype control or CD25 Ab to suppress Tregs. The FOS diet increased BMC, density, and trabecular bone volume in the vertebra (~40%) and proximal tibia (~30%) compared to the TC and control diets (Con), irrespective of CD25 treatment. Both prebiotics increased (P < .01) fecal SCFAs, but the response was greater with FOS. To determine how FOS affected bone cells, we examined genes involved in osteoblast and osteoclast differentiation and activity as well as genes expressed by osteocytes. The FOS increased the expression of regulators of osteoblast differentiation (bone morphogenetic protein 2 [Bmp2], Wnt family member 10b [Wnt10b] and Osterix [Osx]) and type 1 collagen). Osteoclasts regulators were unaltered. The FOS also increased the expression of genes associated with osteocytes, including (Phex), matrix extracellular phosphoglycoprotein (Mepe), and dentin matrix acidic phosphoprotein 1 (Dmp-1). However, Sost, the gene that encodes for sclerostin was also increased by FOS as the number and density of osteocytes increased. These findings demonstrate that FOS has a greater effect on the bone mass and structure in young adult female mice than TC and that its influence on osteoblasts and osteocytes is not dependent on Tregs.

20.
J Agric Food Chem ; 72(15): 8506-8520, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567990

RESUMO

The dysregulation of lipid metabolism poses a significant health threat, necessitating immediate dietary intervention. Our previous research unveiled the prebiotic-like properties of theabrownin. This study aimed to further investigate the theabrownin-gut microbiota interactions and their downstream effects on lipid metabolism using integrated physiological, genomic, metabolomic, and transcriptomic approaches. The results demonstrated that theabrownin significantly ameliorated dyslipidemia, hepatic steatosis, and systemic inflammation induced by a high-fat/high-cholesterol diet (HFD). Moreover, theabrownin significantly improved HFD-induced gut microbiota dysbiosis and induced significant alterations in microbiota-derived metabolites. Additionally, the detailed interplay between theabrownin and gut microbiota was revealed. Analysis of hepatic transcriptome indicated that FoxO and PPAR signaling pathways played pivotal roles in response to theabrownin-gut microbiota interactions, primarily through upregulating hepatic Foxo1, Prkaa1, Pck1, Cdkn1a, Bcl6, Klf2, Ppara, and Pparg, while downregulating Ccnb1, Ccnb2, Fabp3, and Plin1. These findings underscored the critical role of gut-liver axis in theabrownin-mediated improvements in lipid metabolism disorders and supported the potential of theabrownin as an effective prebiotic compound for targeted regulation of metabolic diseases.


Assuntos
Catequina/análogos & derivados , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Metabolismo dos Lipídeos , Prebióticos , Receptores Ativados por Proliferador de Peroxissomo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transdução de Sinais , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...